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A neural-network-fusion architecture for automatic extraction of oceanographic features from
satellite remote sensing imagery.

Farid Askari and Benoit Zerr

Executive Summary: Satellite remote sensing imagery provides the ASW/MW
operational community with a synoptic view of the prevailing environmental conditions
and the capability to extract information on oceanic features/processes affecting
acoustic propagation conditions. The high data volumes and throughputs generated by
earth observing satellites call for the implementation of advanced information systems
including automatic pattern recognition that can aid the analyst in filtering,
synthesizing, monitoring fast changing environments, and locating high-interest targets
and features more efficiently. The work reported here focuses on automatic detection of
oceanographic features in satellite imagery, using artificial intelligence techniques. The
proposed architecture lays the foundation for multi-sensor data fusion and extraction of
information for rapid environmental assessment (REA) applications. Future work
involves the expansion of the number of signatures and decision rules in the knowledge
bank for a more complete representation and classification of tactically relevant features
in satellite imagery.
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A neural-network-fusion architecture for automatic extraction of oceanographic features from
satellite remote sensing imagery.

Farid Askari and Benoit Zerr

Abstract: This report describes an approach for automatic feature detection from fusion
of remote sensing imagery using a combination of neural network architecture and the
Dempster-Shafer (DS) theory of evidence. Deterministic or idealized shapes are used
to characterize surface signatures of oceanic and atmospheric fronts manifested in
satellite remote sensing imagery. Raw satellite images are processed by a bank of radial
basis function (RBF) neural networks trained on idealized shapes. The final
classification results from the fusion of the outputs of the separate RBF. The fusion
mechanism is based on DS evidential reasoning theory. The approach is initially tested
for detecting different features on a single sensor and extended to classifying features
observed by multiple sensors.

Keywords: automatic detection, remote sensing, neural networks, sensor fusion.
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1
Introduction

Today, the remote sensing community is faced with two critical problems. First
is the problem of the management of high data volumes generated by the earth-
observing satellites, and second is, the integration of multiparameter measurements
from different satellites and sensors. On both fronts the magnitudes of the problems
are expected to grow at an accelerated pace. By the end of the decade there will be a
dozen dedicated ocean monitoring satellites in orbit equipped with advanced sensors
which are capable of recording several hundred spectral and polarimetric channels
simultaneously over a single resolution cell and with data rates of over 100 Mbps. As
such a phenomenon on the ocean surface may produce numerous different sets of
responses from different sensors. There is therefore a pressing need for more
advanced information systems which in addition to high-speed networking systems
and high processing capacity incorporate intelligent and automatic pattern
recognition. New quantitative decision making tools must be developed for fusing
and assimilating large volume multidimensional data into usable products. Hence, the
objectives of the research presented in this paper are twofold: 1) Develop a
methodology for automatic oceanographic feature detection and extraction in satellite
remote sensing imagery, 2) Develop a system architecture for information and sensor
fusion. The role of automatic pattern recognition and feature extraction systems is to
assist the resource analyst in filtering and synthesizing vast volumes of data more
rapidly, optimizing decisions, and monitoring fast changing environments more
quickly.

Much published material exists on the general problems of automatic pattern
recognition, feature extraction, and combining multiple classifiers. For automatic
pattern recognition several classification algorithms are available including the
Baysian classifier, k-nearest neighbor (k-NN), distance classifiers [1] and a family of
neural-network (NNT) based classifiers [2]. Feature extraction schemes make use of
spatial information and shape descriptors for detection and classification. The
distinctive characteristics of each feature may be derived from Fourier descriptors,
moments, texture analysis, the Hough transform [3] and the two-dimensional wavelet
transform [4]. For improving the overall classification accuracy or increasing the
efficiency of the system, several schemes are used for combining classifiers [5,6]
including majority voting, sum rule, product rule, fuzzy integral [7], and the
Dempster-Shafer (DS) formalism [8,9]. The primary focus of the studies cited above,
however, has been on speech, handwriting and character recognition applications.
With the exception of the wavelet transform [4], little has been published on the
applications of such techniques to satellite oceanography.
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Our work introduces a new approach to automatic feature detection and sensor
fusion in remote sensing imagery which relies on a combination of neural network
architecture and the DS theory of evidence. The use of neural networks for
classification purposes is of course not new. The approach reported here, however,
differs from previous investigations. Most investigations using neural-networks for
classification rely solely on the outputs of the networks as the discriminator. That is,
after the network is trained and a generalized relationship between input-output is
derived, new data is classified as belonging to a certain class by choosing the
maximum network output. Here, the network outputs are used as inputs to a classifier,
which uses the information in the framework of DS formalism to arrive at
classification results. In other words the neural network outputs are treated as
posteriori probabilities, with each network supplying independent evidence to the
classifier. Our approach also provides for more flexibility in fusing information from
multi-source images when the sensors have different spatial resolutions. Each image
is classified independently and the final classification results are transferred to a
geographic map in the form of symbols or contours. Moreover our approach differs
from traditional image processing schemes in the manner in which 2-D information is
processed. Here, we use a template consisting of four 1-D profiles taken at different
orientations over the image. As such, the classification system is capable of dealing
with shape information and features containing 2-D spatial variability, without
complex and time consuming processing such as 2-D texture analysis.

The article is organized as follows. In Section 2, we show the various types of
signatures for the oceanographic features and the rational for selecting the shape-
kernels which form the basis for automatic detection. We then formulate the neural
network and fusion architectures. The results of applying the technique to image
classification and feature detection are shown in Section 3. It is shown that the system
is capable of detecting oceanic frontal features in satellite imagery on the basis of
training on idealized shapes. Using sensor fusion and a set of predefined rules we
develop a methodology for discriminating between wind-induced versus sea surface
temperatude-induced roughness fronts. Also a strategy for automatic detection of
salinity fronts is proposed by fusing signatures from the roughness and color fields.
The conclusions are given in Section 4. The approach presented is well suited to
rapid, accurate and systematic search of features in a single image or multi-sensor
data.
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2
Materials and Methods

This section describes the overall automatic detection system. First, we show
examples of oceanographic features and their corresponding signatures that provide
the basis for the automatic detection problem. Descriptions of the neural network and
fusion architectures and a demonstration of the technique in classifying idealized
patterns and features follow.

2.1 Oceanographic Features and Signatures

When interpreting satellite imagery, the human eye uses a combination of
tonal, spatial structures and textural features as visual indicators for recognizing or
distinguishing features from their backgrounds. In order for a machine to learn and
recognize features automatically, low-level and high-level information must be
furnished to the pattern recognition system. The low-level information consists of
feature attributes such as edges or intensity changes, lines or regions. The high-level
information consist of knowledge representations and inference mechanisms which
describe the feature's physical attributes. Tonal or intensity modulations as well as the
shapes are utilized as the basic low-level information for feature extraction.
Modulation is defined as the change in local image intensity with respect to the mean
background intensity.

In describing high-level information, knowledge can be represented as
declarative or procedural [10]. In declarative representation, knowledge is assembled
through historical evidence. In procedural representation a set of predefined rules
govern the flow of information and decisions. The following discussion and examples
illustrate the manner in which we utilize declarative knowledge in formulating the
pattern recognition system. Numerous studies have reported the relationships between
intensity modulations in the roughness, color and the temperature fields to physical
processes on the ocean. Among processes contributing to variations in the water
"color" in coastal regions are river discharge of dissolved organic matter and
suspended sediment, re-suspension of bottom material due to tidal currents, storms
and wave action, algal blooms and nutrient loading [11]. For small-scale roughness,
the primary geophysical processes that modulate the backscattered radar cross-section
are temperature fronts, discontinuities in the wind field, interactions between long-
waves and short-waves, interactions between waves and currents and surfactants and
surface films [12]. Processes contributing to sea surface temperature anomalies
include diurnal heating and cooling, upwelling, diffusion or advection by currents,
filaments and eddies [13].
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Consider the variations in sea surface roughness as shown in an ERS-2 SAR
image (Fig. 1). The 1-D vertical profile (Fig. lb) across feature A shows a distinct
step-like (bright-to-dark) change in surface roughness with a smoother surface on the
upper portion of the image. Historical evidence suggests that in SAR imagery, two
primary physical mechanisms contribute to step-like changes in sea surface roughness
[14, 15]: wind stress changes induced by the thermal stability variations near a SST
front and wind stress changes induced by an impulsive atmospheric wind/gust front
[16]. Examples of similar features and patterns appear in [16]. A 1-D horizontal
profile across feature B (Fig. 1c) shows a bright signature with enhanced roughness
concentrated over a narrow region. It is widely accepted that narrow-banded
modulations are associated with regions of strong wave current interactions, ie,
convergent fronts [16], when the modulation is positive (bright) and with the
accumulation of surfactants, when modulations are negative (dark) [12].

In a declarative knowledge base containing step-like and Gaussian-shaped
features the modulations are as follows. For a step-like feature a distinct boundary
separates two regions with different mean image intensities, whereas for the
Gaussian-shaped feature, a pulse of finite width stands above or below a mean
background. The idealized shapes provide an adequate description of certain types of
oceanic fronts in remote sensing imagery. The first type is often associated with
boundaries of large-scale currents and eddies observed in advanced very high
resolution (AVHRR) or Sea-viewing Wide Field-of-view Sensor (SeaWIFS) imagery,
and wind and sea surface temperature (SST) fronts in SAR imagery. And the second
type is often associated with river and estuarine plumes, current filaments and jets in
AVHRR or SeaWIFS imagery and velocity fronts and slicks in SAR imagery. To
further generalize the problem and account for the various sensor resolutions, feature
length-scales and sensor look-angle dependencies, we construct pattern/feature
functions with a broad range of adjustable parameter. The step-like modulations are
further divided into two subclasses: steps with intensities increasing from left-to-
right, and steps with intensities decreasing from right-to-left. In addition to the
vertical steps, the steps are permitted to contain ramps with varying slopes. For the
Gaussian-shaped pulses, which can be either positive or negative, the pulse widths are
varied (Fig. 2).

Recent research has shown that many ocean features produce anomalous
signatures in more than one field. Sometimes a surface feature may produce
signature anomalies in all three fields, while in others only two of the fields may be
expressed. When the fields do appear concurrently the question is whether the fields
are collocated or is there horizontal dislocation. There are situations for example with
roughness and SST fronts, where one field can lag or lead the other depending on the
structure of the atmospheric boundary layer or the wind direction [14]. It is also likely
that when observing a frontal system, anomalous signals may emerge from different
positions within the front because of the differences in the penetration depths of the
electromagnetic waves into the surface. The IR and microwave energies are due to
surface processes, whereas the color field results from light upwelled from below the
surface.
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The ultimate goal of fusion of the various sensors and features is, however, to
arrive at a knowledge base that has a higher information content than the individual
parts. Next, we demonstrate how the shapes can be incorporated in a neural network
for automatic feature detection.

2.2 Neural network architecture

Artificial neural networks are well suited to a variety of problems in signal
and image processing in which competing hypotheses are pursued simultaneously and
rapidly [2]. The behavior and practical characteristics in terms of error rates, training
time, classification time, and memory requirement of several different networks and
classifiers are compared in [17]. A review of neural networks for classification of
multi-spectral remotely sensed imagery is given in [18].

The neural network architecture used here relies on radial basis functions
(RBF) [2, 19] for training and pattern classification. The RBF network belongs to the
family of multilayer feedforward neural networks. In network design, one of the
important considerations in choosing the classifiers is how the classifier partitions the
feature-space and the shapes of its decision boundaries. How well a classifier can
generalize and discriminate, new unseen data depends on the structure of its decision
regions. The RBF classifiers have relatively smooth decision boundaries, and are thus
able to generalize well to unseen data [17].

The neural network (Fig. 3) used here consists of three layers: input layer
containing the input nodes, hidden layer containing the basis function (BF) nodes,
and the output layer containing the output nodes. In general, a network is trained or
tuned to recognize patterns by being shown a given set of input-output pairs. The
tunable parameters take the form of weights.

The first step in training involves the specification of the number of basis
functions (BF). For our particular problem we determined that five BF are sufficient
to achieve the desired classification performance. Unit weights connect the input
layer to the second layer.

The second layer consists of a number of multi-dimensional Gaussian BF defined by:

I= 1 (2.1)
=j w exp(- X -5CI +bj
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where X = (x1 ,x2,...Xp) is the input vector, and Y = (y, y,, ...yp) is the output vector, C,
is mean vector and ay is the covariance matrix, n is the number of BF, and b, is a bias
term which is used to threshold the output of the jth neuron in the output layer. The
second step in training involves determining the BF centers and variances or widths
of the BF. The RBF classifier is essentially a function mapping interpolation method
that partitions the n-dimensional measurement space into hyper-volumes or regions
belonging to the separate classes. The RBF centers and widths define the hyper-
volumes. The mean vectors are computed from the training set by a fuzzy c-means
clustering algorithm [19], where the number of clusters are equal to the number of BF
needed by the network. The variance is computed using the nearest four neighbors.

The output nodes z, are activated using a linear combination of the BF nodes:

Zi wijyi + WOj (2.2)

where z, is the output of the jth output node, y, is the activation of the ith BF node and
WI, is the weight connecting the ith BF node to the jth output node, and w, is the bias
of the jth output node. The third step of the training process involves computing the
weights, which are determined using matrix pseudo-inverse approach. When
classification is exclusively performed by RBF, an input vector is classified as
belonging to the class associated with the output node with the largest response.

2.3 Fusion Mechanism

In the previous section we described the architectural details of the neural
network. For many applications it is standard practice to use the network as a stand-
alone classifier and choose the maximum output from a given node for selecting a
particular class. Our goal here, however, is to extend the technique into a
classification strategy for multiple information/sensor fusion.

We first show the application of the technique for detecting features in a single
image/sensor. A 2-D image is classified using four 1-D profiles. For each l-D profile,
the network outputs an independent decision or belief that the detected profile
belongs to one of the predefined classes. The individual opinions are then fused to
derive the final classification results. The fusion mechanism is based on the DS
theory of evidential reasoning [9, 21]. The DS theory is a mathematical formalism for
assigning beliefs to a set of hypothesis, and for combining belief in a consistent
manner. First, we illustrate the DS techniques by a simple numerical example, and
later show graphically the behavior the network/classifier using idealized features.

The principal requirement for the application of the DS is the construction of
the frame of discernment (FOD). The elements of the FOD are chosen as the possible
features that might be encountered on a satellite image. We define the FOD by the set
0 = {F1, F2}, where F1 and F2 are two separate features. Contrary to a probability
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distribution, which assigns belief to the elements of FOD, the DS theory assigns
belief to all possible subsets of the FOD, and actually distinguishes between
uncertainty and ignorance. The degree of ignorance is introduced by assigning belief
to the whole frame of 0. Here, we use the RBF outputs for assigning belief.

For demonstration we extract a vertical and a horizontal profile over two
hypothetical features. The RBF is trained to distinguish between the two features
using only two elementary profiles, p1 and p2. The output of the RBFs for the vertical
and horizontal profiles respectively, are {ply, p2j, and {plh, p2 h}. We assume that
F1 and F2 are isotropic features, such that the evidence from the horizontal and
vertical profiles can be combined directly. The possible subsets of FOD are {FI),
(F2), (Fl, F2), and (0).

Now suppose that the RBF outputs result in the following set of beliefs: pl, =
0.8, p2,= 0.2, plh = 0.55, p2h = 0.45. Here both belief functions, (pl, > p2,) and (plh
> p2,), support the hypothesis that feature F1 is present, although the support from
the horizontal profile is weaker than the vertical profile. Now if we submit the
following set of beliefs:

m,({10) = 1-pl, = a, = 0.2 (2.3)
m,((F1 )) = pl,,-p 2, = b , = 0.6 (2.4)
mi({F1,F2}) = p2 v = c v = 0.2 (2.5)

and,

m2({ )= 1 -plh = ab = 0.4 5  (2.6)
m2({Fl}) = Plh- p2 h = bh= 0.1 (2.7)
m2({FI,F2}) = p2h = ch = 0.45 (2.8)

to the DS and use the orthogonal sum (m = m, @ m2) combination rule [21]:

m(A) = BnC=A m, (B) m2 (C)1- Y•n:c__o in, (B) M2 (C)

provided that

XBC-cOm(B) m2(C) < 1. (2.10)

The order in which mass functions are combined is irrelevant because the orthogonal
sum is commutative, m1 EDm 2 =m 2 @ m1 , and associative,

mI E (M-, ( m3 ) = (MI @ EM 2 ) @ m3 . Using 2.3-2.8 in 2.9 we obtain
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m({F1 }) = m1({0})m 2({F1 })+m2({O})mQ({F1 })+m,({F1 })m2({F1 })+..

m,({F1})m2({F1,F2})+ml({F1,F2})m 2({FI}) (2.11)
or

m ({Fl1) = av bb + ab b, + bv bh+ bv ch + c, bb = 0.64 (2.12)
m({F2}) = 0.0 (2.13)

We obtain a much stronger support for feature Fl, using the combined beliefs
(m Fl }--0.6, m {F2}=0.O. In this situation, DS concentrates support when there is
consent between beliefs and reduces it when there is not. Next we consider a situation
of conflict ((p I,> p2v) and (Plh < p2h), ie, when the beliefs don't agree:

m1({0) = 1-pl, = a, (2.14)
m,({F1 ) = pl1-p 2 , = b, (2.15)
m1({F1,F2}) = p2 , = c, (2.16)

and,

m2({01) = l-p2h = a, (2.17)
m2({F2}) = p2h-plh = b, (2.18)
m2({F1,F2)) = plI = c, (2.19)

Combing the above beliefs into DS and using (m = mi ( m2) we obtain:

m({F1}) = (bv ah + b- ch)/(1- bv bb) = 0.574 (2.20)
m(F2}) = (a, bh + c, bh)/(1- b, bh) = 0.043 (2.21)

Here the conflict results in the reduction of support for both hypothesis.

2.4 Pattem Classification Using Idealized Features

Now we apply the technique to a uniform intensity image containing two
idealized features, a narrow pulse and a square with intensities different from the
background (Fig. 4). The 2-D image is processed by sub-dividing it into a series of
square blocks. A template containing four 1-D profiles is used for extracting intensity
values along the 00 to 1800, 900 to 2700, 45 0 to 225 0, and 135 0 to 315 0 directions. In
every block, the intensity values for each profile are processed through a bank of
RBFs. The network outputs, which are regarded as a posteriori probabilities are
transformed into beliefs belonging to the element of the FOD:

(PULSE, STEPLHH, STEPLHV, STEPLHD1 , STEP_LH_D2,
STEPHLH, STEPHLV, STEP_HL_D1, STEPHLD2)

-8-
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Where the following notation applies:

LH: low-high transition,
HL: high-low transition,
H: horizontal profile (0-180),
V: vertical profile (90-270),
DI: main diagonal (45-225),
D2: second diagonal (135-315),
PULSE: used the Gaussion profiles for the 4 profiles equivalently.

STEP LH H: uses mainly the low-high step from the horizontal profile but
also the low-high step from main and second diagonals.
STEPXXX are defined in the same way.

Figures 5-8 show the system response when the template is placed in different
positions within the 2-D image. The network output consists of a 3x4 matrix, where
the first dimension corresponds to feature types (STEP_LH, STEPI HL, Pulse), and
the second dimension is the profile orientation (H, V, Dl, D2). Figures 5 and 6
illustrate the network response when the template is aligned respectively, with the
square's horizontal and vertical edges. When positioned along the vertical edge, the
network shows consent between the H and DI-profiles, disagreement between the H
or Dl with the D2 profile, and no opinion is given by the V-profile. On the other hand
when the template is placed along the horizontal edge, there is consensus among the
V, DI, and D2 profiles, and no opinion is given by the H-profile. In the final analysis,
in both cases the combined evidence supports the proposition that a step-like feature
resides at the location.

Next we consider the case where the template is placed on the pulse, and
align Dl parallel to the pulse's main axis. Here, the network response (Fig. 7)
shows consent among the H, V, and D2 profiles, with the D1 profile providing no
opinion. The combined vote is in favor of the pulse (Fig 7c). Finally, we place the
template over a region of uniform intensity (Fig. 8). Here all four profiles respond
unanimously to the background noise, and no strong preference is given to either
the pulse or to the step. These examples clearly show that a numerical description
derived from one or even two profiles is not adequate for classification, but the
fusion of information from four profiles do provide sufficient discriminatory
power for classifying features with 2-D variability.

-9-
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3 Results

In this section we first demonstrate the automatic detection/classification
capabilities of the system using individual images, and then show the multi-sensor
fusion results. For testing the automatic classification three types of satellite imagery
are considered: SAR/ERS2 image, AVHRR/NOAA-14 image, and
SeaWIFS/ORBVIEW-2.

In the classification stage, the pattern recognition system replaces the visual
interpretation step with quantitative decision making. The outputs from the classifiers
are essentially thematic maps, in which the pixels in the original imagery are classified
into one of the several classes (or themes). The classes in this case are the predefined
shapes (steps, pulses) and the outputs correspond to the probability of finding a class
at that pixel location. The (0,1) interval in each image is mapped into to the grey scale.

We next present the individual classification results. The SAR image (Fig. 9a)
shows two dominant plateau regions where mean intensities (or roughness) change by
about 1.6 dB in a step-like fashion. Also visible, are two prominent narrow-bright-
curvilinear structures oriented northwest to southeast within the low-roughness region
in the northern half of the image. These pulse-shaped features have modulation
amplitudes of 1 and 1.6 dB. Figures 9b and 9c show respectively, the classification
results when the SAR image is processed through the pattern recognition network for
detection of steps, and Gaussian-shaped pulses. In addition to detecting the primary
step that separated the plateau regions, the network detected (Fig. 9b) several
secondary steps in the lower half of the image, although the amplitudes of these steps
are much smaller than the main step. Concerning the detection of pulses, the network
was able to identify the curvilinear structures, but in addition, it recognized numerous
bright points not easily visible in the original image (Fig. 9c).

Figures lOa-c and show respectively the SAR, AVHRR and SeaWIFS imagery.
The SST field shows (Fig. 10b) a distinct front separating cooler (by I to 1.5 C°)
coastal water from waters offshore. The SeaWIFS image (Fig. 10c) intensities shown
here correspond to variations in k532 -, where k.32 is the attenuation coefficient for green
light. The important observation is the horizontal variability of the k532,' parameter
which shows several step-like signatures associated with different water masses in the
region.

-10-
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Next we classify tht temperature and color fields using the same procedure
applied to the SAR imagery and then proceed with the fusion problem. The task of
fusing information over the same region/feature from three separate sensors raised two
problems. The first problem resulted from the differences in repeat cycles of different
satellites, as well as cloud cover which limited our data base to only two days, during
which all three sensors imaged the same region near-simultaneously. The AVHRR
image was taken almost seven hours prior to the ERS-2/SAR pass, while the SeaWlFS
pass occurred approximately two hours after the ERS-2/SAR pass. The second
problem was the registration of the various images having different spatial resolutions.
Instead of registering the various images on a pixel-by-pixel basis, which would have
resulted in loss of information for the high-resolution SAR image; we projected the
coordinates of the classification labels from the low-resolution imagery onto the geo-
referenced SAR image. In Fig. 11 yellow circles represent the positions of step-like
features in the ocean-color field, and red circles representing the SST field.

We now turn to the sensor-fusion problem and pose certain hypotheses using
declarative and procedural knowledge. For example using a single sensor, ie, a SAR
we are able to discriminate between roughness fronts the signatures of which are
linked to hydrodynamic processes versus wind stress variations, ie, pulse-shaped or
step-like signatures. There are situations, however, in which a single sensor will give
ambiguous results due to the similarities of the feature signatures. Such a situation
arises with the step-like front observed in Fig 10a. Given only the roughness
signature, it is unclear whether the signature is of SST or wind origin and additional
physical evidence is required. If we utilize the AVHRR sensor as supplementary
evidence and the following set of elements:

SST Front: SSTF = {P1s, P}A) and Wind Front: WF = {P2s, PIA (3.1)

Where:

Pts : probability of having a step-type profile from SAR sensor.
p2s: probability of having a uniform profile from SAR sensor.
PIA: probability of having a step-type profile from AVHRR sensor.
p,: probability of having a uniform profile from AVHRR sensor.

S1 and S2 are the SAR-roughness responses, and A, and A2 are the AVHRR-SST
responses respectively, for the two features, the pattern recognition system (Fig. 12)
can form a hypothesis based on:

"* Rulel: the feature is a SSTF ifS1 and A, are both steps.
Or,

"* Rule 2: the feature is a WF if S2 is a step while A2 is a constant.

-11-
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In SAR imagery a step-type profile response occurs for both SSTF and WF.
Thus with p,, > p. support must be given to both fronts, and one cannot discriminate
between the two fronts. So the FOD is

m,(QWINF, SSTF})= Pis (3.2)
mM({ O) = I- P1 s (3.3)

When P2s > Pis support is given to "other" non-step phenomena (with uniform
response) observed in SAR imagery:

m,({other}) = p, (3.4)
m,({0}) = 1- P2s (3.5)

With the addition of the AVHRR sensor if PIA > p2A, then support is given to
SSTF:

m 2({SSTF}) = PIA- P2A (3.6)
m2({0}) = '_ PIA+ P2A (3.7)

Whereas if P2A > PAA support is given to WF. However, since it is likely to have
other types of phenomena (non-step) in AVHRR, support must also be given to
"other":

m2({WINF, other)) = PIA- PIA (3.8)
m({O}) = 1- P2A+ P.A (3.9)

As before m, and m2 can be combined using m = m, Q m2 to arrive at
individual mass probabilities using the fused results. The underlying assumption in
rule 1 is that time-scales involved in generating SST changes by an atmospheric wind
front which in turn would induce roughness changes are generally much longer
(several hours) than generating purely wind-driven roughness changes (seconds).
Given that there is good spatial correlation between the step-like roughness front and
the AVHRR-derived SST front, we can conclude that the step-like roughness front is
associated with a SST front. We attribute some of the dislocation in the northwest
region of the image where the two fronts begin to diverge (Fig. 11) to advection
during the seven hour period.

The other remarkable outcome of the fusion result is (Fig. 11) the near-perfect
co-registration of the bright-narrow radar bands (Gaussian-shaped pulse) and step-like
changes in the color field, which we suspect to be associated with a salinity front.
Similar behaviors have been noted for salinity fronts observed on the continental shelf
of the eastern U.S. by [22, 23]. The bright radar signatures are attributed to strong
current convergence (driven by density anomalies), and small-scale wave breaking in
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the frontal zone. Color anomalies are attributed to demarcation of water masses
having different salinities and optical properties. If this behavior appears to be a
general feature of salinity fronts, the combination of SAR and SeaWIFS would make
a powerful detection tool.
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4
Conclusions

In this report we describe a neural-network-based classification system for
automatic pattern recognition. The study has yielded the following conclusions:

1. Based on training on idealized shapes, the system is capable of
automatically detecting and locating frontal features in satellite remote sensing
imagery.

2. Utilizing a template consisting of a series of 1-D profiles provides an
efficient alternative to 2-D image-feature detection and processing.

3. Use of declarative knowledge in conjunction with a set of predefined rules
provides a means for discriminating between physical processes and ocean features.

4. Working in the framework of geo-referenced data base with either
symbolic information or image-derived contours makes the sensor fusion problem
more manageable.

The approach presented here is well suited to rapid, accurate and systematic
search of features in multi-sensor data. The credibility of the methods, however,
requires further testing with expanded data set involving multi-sensor signatures as
well as simultaneous in situ observations. Future research should focus on expansion
of the number of features/signatures in the knowledge bank, the multi-sensor fusion
rules, and the relationships between the rules and real ocean processes.
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Figure la C-band (5.4 GHz) SARIERS2 image with 200x200 pixels (50 m pixel

spacing).
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Figure 5 A) Placement of the template on a horizontal edge, B)the network output matrix, C)

the final output from the DS classifier.
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Figure 7 Same as 6, except for placement of a template on a pulse.
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IM,

Figure 9b Original SAR image.

Figure 9b Classification of step-
like features.

Figure 9c Classification of pulse-
like features.
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Figure 10a SAR/ERS2 image with
200x200 pixels (50 m pixel spacing)
taken over the Gulf of Cadiz, Spain at
11:08 UT, 14 February 1998.

AVHRR

4, Figure 10b AVHRR/NOAA-14 image
with 1.1 km pixel spacing taken over the
Gulf of Cadiz, Spain at 4:01 UT, 14
February 1998.

SE WIFS

Figure 10c SeaWIFS/ORBVIEW-2
image with 1.0 km pixel spacing taken

"* -. over the Gulf of Cadiz, Spain at 13:02
UT, 14 February 1998.
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Figure 11 High resolution SAR image with overlay of classification
results from AVHRR and SEA WIFS imagery.

FEATURES

SSTF WF SALF

Si S2 S3

SENSOR
RESPONSE Al A2 C3

S STF: Sea =urface temperature frout S: SAR

WF: Wind front A: AVHRR

SALF: Salinity fron~t C: SEAWIFS

Figure 12 Sensor fusion architecture.
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